A Deligne-Riemann-Roch isomorphism I: Preliminaries on virtual categories
نویسنده
چکیده
منابع مشابه
Riemann-roch for Deligne-mumford Stacks
We give a simple proof of the Riemann-Roch theorem for Deligne-Mumford stacks using the equivariant Riemann-Roch theorem and the localization theorem in equivariant K-theory, together with some basic commutative algebra of Artin local rings.
متن کاملRiemann-roch for Equivariant K-theory
The goal of this paper is to prove the equivariant version of Bloch’s Riemann-Roch isomorphism between the higher algebraic K-theory and the higher Chow groups of smooth varieties. We show that for a linear algebraic group G acting on a smooth variety X , although there is no Chern character map from the equivariant K-groups to equivariant higher Chow groups, there is indeed such a map K i (X)⊗...
متن کاملChern Classes in Deligne Cohomology for Coherent Analytic Sheaves
In this article, we construct Chern classes in rational Deligne cohomology for coherent sheaves on a smooth compact complex manifold. We prove that these classes satisfy the functoriality property under pullbacks, the Whitney formula and the Grothendieck-Riemann-Roch theorem for an immersion. This answers the question of proving that if F is a coherent sheaf of rank i on X, the topological Cher...
متن کاملA construction of the Deligne–Mumford orbifold
The Deligne–Mumford moduli space is the space M̄g,n of isomorphism classes of stable nodal Riemann surfaces of arithmetic genus g with n marked points. A marked nodal Riemann surface is stable if and only if its isomorphism group is finite. We introduce the notion of a universal unfolding of a marked nodal Riemann surface and show that it exists if and only if the surface is stable. A natural co...
متن کاملRiemann Hypothesis for function fields
1 1 Preliminaries 1 1.1 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Primes and Divisors . . . . . . . . . . . . . . . . . . . . 2 1.2.2 The Picard Group . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Notation . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009